(ounting

Say we have 10 figurines we to line up in some order,
How many ways can we order them?

$$10 \cdot 9 \cdot 8 \cdot 7$$

 $10 \cdot 9 \cdot 8 \cdot 1 = 10!$

What if we only have space for
$$4?$$

 $10 \cdot 9 \cdot 8 \cdot 7 = 10 \cdot 9 \cdot 8 \cdot 7 = 10!$
 $6!$

The number of permutations (or ordered choices) of K objects
from n options is
$$\frac{n!}{(n-K)!} = P(n/K)$$

"n permute K"

10 figurines, choose 4 of them to pack

$$((n,k) = \frac{n!}{(n-k)! k!} = \binom{n}{k} = nCk$$

of ways to choose set of k objects from a choices

combinations with repetition: I want to choose 6 plants for my garden from: thyme, oregano, minit.

In how many ways can I do this?

Choose K objects from n types. =
$$\binom{k+n-1}{n-1} = \binom{k+n-1}{K}$$

& review binomial loefficients and binomial theorem & Lethen do 17.6